

Multiligament Knee Injuries & the STaR Trial

Spectrum Pathology

Energy

- 53% high, 47% low
- -BMI
- Associated Injuries
 - -0.072% orthopedic trauma
 - Neurovascular injury 18%
 - Fractures
 - Head trauma

Multiligamentous Injury Classification System

Schenck classification

Table. Anatomically Based Knee Dislocation Classification System								
KD-I	ingle cruciate + collateral injury							
KD-II	ACL and PCL injury							
KD-III M	ACL, PCL, and MCL injury							
KD-III L	ACL, PCL, and LCL + PLC injury							
KD-IV	ACL, PCL, MCL, and LCL + PLC injury							
KD-V	Dislocation + fracture							

Prevalence of Vascular Injury

Maslaris et al: European Journal of Orthopaedic Surgery & Traumatology (2018)

- Absent pulses
- Bruit or thrill
- Active or pulsatile hemorrhage
- Arterial Occlusion (the 5 Ps)
 - Pallor, pain, paresthesia, paralysis, pulseless
- Expanding hematoma

Feliciano et al. The Journal of Trauma: Injury, Infection, and Critical Care 2011

- History of arterial bleeding at the scene or in transit
- Proximity of injury to an artery
- Non-expanding hematoma
- Major Single Nerve Deficit
- Reduced Pulses
- Posterior or lateral knee dislocation

Poor Prognostic Indicators

- Poor prognostic factors with significant
 posttraumatic amputation rates
 - Major soft tissue injury (26%)
 - Compartment syndrome (28%)
 - Multiple arterial injuries (18%)
 - Ischaemia duration > 6 h (24%)

ABI (SBP) or API (doppler arterial pressure)

SBP injured lower extremity

SBP uninjured arm brachial

API cutoff \geq 0.9 to determine need for imaging is 95% sensitive, 97% Specific for arterial injury

Lynch et al Ann Surg 1991

ABI result uncertain

- Obesity
- Shock
- Hypothermia
- Pre-existing peripheral artery disease
- Multiple extremity trauma

CT angio vs duplex sonography

Management Algorithm

Nicandri et al Knee Surg Sports Traumat Arthrosc Off J ESSKA 2010

OREGON IEALTH & SCIENCE UNIVERSITY

Maslaris et al: European Journal of Orthopaedic Surgery & Traumatology (2018)

Straight to OR

- Irreducible
- Hard signs of vascular injury

 Vascular surgery might get CTA to localize
- Compartment Syndrome
- Open Injury +/- Fracture
- > 6 hours SSVI (prophylactic fasciotomy +/- vascular repair)

Common Peroneal Nerve Injury

- 14-25% KD
- 45% with posterolateral dislocation
- 50% neural lesions after KD heal spontaneously
- Functional Foot Dorsiflexion Recovery ≥3/5
 - 38% complete CPN injuries
 - 87% partial CPN injuries
 - PTTT most reliable to restore function with persistent CPN palsy

Woodmass et al. Knee Surg Sports Traumatol Arthrosc (2015)

Common Peroneal Nerve Injury

- No difference from routine neurolysis
 - If 0/5 TA but nI EMG and positive intraop Nerve Action Potential (NAP) 100% recovery from neurolysis (no control)
 Kim et al *Neurosurg* 1996
- Inadequate discouraging data for nerve repair, cable graft, nerve transfer
- PTTT most reliable
 - Expect 40% strength, 70% ROM contralat

- Molund et al Clin Orthop Relat Res 2014

Woodmass Algorithm

Immobilization

- External Fixator
 - Open Trauma
 - Vascular Injury
 - Compartment Syndrome
 - Unstable Fx Dislocation
 - Polytrauma
 - Obese
- Hinged Dynamic External Fixator
 - Angelini et al Orthop Traumatol Surg Res 2015
 - Popular 2002-2006
- Hinged Knee Brace

Surgical Outomes

Surgical Treatment of Combined PCL–ACL Medial and Lateral Side Injuries (Global Laxity): Surgical Technique and 2- to 18-Year Results

- 35 patients -16 chronic injuries, 9 acute
- 16/35 (46%) nl posterior drawer
- 33/35 (94%) nl Lachman
- 6/25 (24%) nl posterolateral stability
 - 19/25 over-tensioned from normal
- 22/25 (88%) nl varus stress test
 - 3/25 (12%) grade 1 opening (<5mm)</p>
 - lysholm=91, tegner=5.3,
 - HS knee ligament rating scale 86

- 28 "global laxity"
- 2 mm KT1000 posterior drawer
- 0.2 mm KT1000 anterior drawer
- Lysholm 82, HSS= 89, tegner 4

Surgical Outomes

Surgical Treatment of Combined PCL–ACL Medial and Lateral Side Injuries (Global Laxity): Surgical Technique and 2- to 18-Year Results

- 60% return to preinjury function
- 30% develop post traumatic OA at follow up

Fanelli et al. J Knee Surg 2012

Staged Surgical Management

Staged protocol for initial management of the dislocated knee

Bruce A. Levy · Aaron J. Krych · Jay P. Shah · Joseph A. Morgan · Michael J. Stuart

- 9 patients- PREOP ex fix
 - Open injury, vascular injury, inability to maintain reduction in brace
 - 75 days avg in ex fix prior to reconstruction (21-171)
- ROM 0-97, lysholm 76, IKDC 62, 44% HO
- 1+ laxity 2/9 (<5mm in varus/valgus)
- No Revisions
- 11% manipulation (13-57% in acute repair studies)

SURGICAL TECHNIQUES

Surgical Management of Knee Dislocations

Chhabra, Anikar MD, MS¹; Cha, Peter S. MD²; Rihn, Jeffrey A. MD¹; Cole, Brian MD³; Bennett, Craig H. MD⁴; Waltrip, Robert L. MD⁵; Harner, Christopher D. MD¹

Author Information 😔

The Journal of Bone & Joint Surgery 87(1):p 1-21, March 2005. | DOI: 10.2106/JBJS.D.02711

31 pts: 19 acute/ 12 chronic

	Acutely repaired <3 weeks	Chronically repaired >3 weeks
lysholm	91	80
KOS-ADL	91	84
KOS- Sports	89	69
Excellent Meyer rating score	16/19 (84%)	7/12 (58%)
manipulation	4/19	0/12
Stability	No statistical difference	

Review

TABLE 8. S	Summa	ry of I	Demog	raphics of	and Fu in	nctional 1 Multiliz	Results gament	in Stud Knee In Me	ies Con juries an	nparing	Early V	Vith Lat	e Surgi	cal Trea	tment
		No. of Me Patients		Mean (y	Iean Age Mean F/U (yr) (mo)		Interval From Injury to Surgery (wk)		Mean Lysholm Score		Tegner Score		IKDC (% Excellent/ Good)		
Study	H	Early	Late	Early	Late	Early	Late	Early	Late	Early	Late	Early	Late	Early	Late
Tzurbakis et al	1.32	35	9	29	29	51	51	1	29	88	82	4	NR	77	56
Harner et al.31		19	12	29	29	44	45	2	28	91	80	NR	NR	53	8
Liow et al.30		7	14	26	27	25	38	1	123	87	75	5	4	43	36
Wascher et al.	14	9	4	26	31	38	40	3	22	92	79	NR	NR	44	50
Fanelli et al.29		10	11	NR	NR	39	39	3	99	90	92	5	5	NR	NR
Total		80	50	28	29	40	43	2	51	90	82	5	5	47	31

 TABLE 9. Summary of Functional and Clinical Results in Studies Comparing Early With Late Surgical Treatment in Multiligament Knee Injuries

		Knee Outco	ome Survey						
Study	Activitie Li	es of Daily ving	Sports	Activity	Mean	n ROM	Mean Flexion Loss		
	Acute	Chronic	Acute	Chronic	Acute	Chronic	Acute	Chronic	
Tzurbakis et al.32	NR	NR	NR	NR	130°	132°	8°	6°	
Harner et al. ³¹	91	84	89	69	128°	129°	13°	10°	
Liow et al. ³⁰	NR	NR	INK	INK	NR	NR°	4°	8°	
Wascher et al.14	NR	NR	NR	NR	132°	126°	5°	3°	
Fanelli et al.29	NR	NR	NR	NR	NR	NR	NR	NR	
Total	91	84	89	69	130°	129°	7 °	7 °	

Abbreviation: NR, not reported.

	pts	age	flexion	Clancy Excellent Outcome	Clancy Good outcome	Failure
Chronic multilig	35	35	95-135 (118 avg)	7/35 (20%)	14/35 (40%)	3/35 (8%)

Karatagis et al. Knee Surg Sports Traumatol Arthrosc 2006

Timing Conclusions

- Systematic review data shows trend towards better Outcome Scores with acute treatment
- Acute treatment associated with increase in arthrofibrosis and need for manipulation

Repair vs. Reconstruction

TABLE 6.	Summary (of Demos	graphics o Damage	and Func ed Structi	tional Re ures in M	sults in S ultiligam	Studies Co ent Knee	omparing Injuries	Repair V	With Reco	onstructio	on of
Study	No. of	Patients	Mean A	Age (yr)	Mean F/U (mo)		Mean Lysholm Score		IKDC (% Excellent/Good)		Failures	
	Repair	Recon	Repair	Recon	Repair	Recon	Repair	Recon	Repair	Recon	Repair	Recon
Stannard et al.27	35	22	31	36	33	33	88	91	71	77	37%	9%
Mariani et al.28*	17	6	25	35	83	83	85	85	24	25	NR	NR
Total	52	28	28	36	58	58	87	88	48	51	37%	9%

Levy et al. Arthroscopy 2009

- 12 Transosseous ACL/PCL repair vs 14 ACL/PCL reconstructions had no difference in lysholm, IKDC, Stability
 - Richter et al AJSM 2002
- 21 ACL/PCL/Lateral Injury treated with "en masse" lateral repair & ACL recon. Nonop PCL tx
 - 89% nl varus stress, 82% Neg Post Drawer,
 - Pts treated >4 weeks out had inferior lysholm, IKDC and return to sports
 - Shelbourne et al AJSM 2007

Higher success rate observed in reconstruction techniques of acute posterolateral corner knee injuries as compared to repair: an updated systematic review

Luc M. Fortier, Derrick M. Knapik, Josh J. Condon, Daniel DeWald, Zeeshan Khan, Benjamin Kerzner, Matthew J. Matava, Robert LaPrade & Jorge Chahla

Knee Surgery, Sports Traumatology, Arthroscopy (2023) Cite this article

- 12 studies, 288 patients
 - 87% overall success rate
 - 22% failure rate in repair vs 7% failure rate in reconstruction

Weightbearing Protocols After Posterolateral Corner Reconstruction: A Systematic Review

Brandon L. Morris, MD,^{*} Tanner Poppe, BS,^{*} Kenneth Kim, DO,[†] Brandon Barnds, MD,^{*} Paul Schroeppel, MD,^{*} Scott Mullen, MD,^{*} Armin Tarakemeh, BA,^{*} Megan Bechtold, DPT,^{*} and Bryan G. Vopat, MD^{*‡}

- 10 articles, 245 patients
 - Immediate WB, Progressive WB, Delayed WB
- No significant difference in outcome scores among the immediate, progressive, and delayed WB protocols.
- Time to permitted return to sport was not significantly different among the groups but trended toward significance, with the progressive WB cohort being earliest
- Delayed and immediate WB had higher overall complication rates

Examples

- Fanelli: 3 weeks NWB with knee locked in extension, progressive ROM weeks 4-6, progressive WB starts at 6 weeks, Brace X 10 weeks, sports after 9 months
- Harner: Locked in extension X2 weeks, passive ROM 2-6 weeks, start AROM at 6 weeks. Partial Progressive WB X 4 weeks then full unless PLC. Jog OK at 6 months, sports at 9 months

Posterolateral corner of the knee: an expert consensus statement on diagnosis, classification, treatment, and rehabilitation

Jorge Chahla ^{ID}, <u>Iain R. Murray</u>, <u>James Robinson</u>, <u>Koen Lagae</u>, <u>Fabrizio Margheritini</u>, <u>Brett Fritsch</u>, <u>Manuel Leyes</u>, <u>Björn Barenius</u>, <u>Nicolas Pujol</u>, <u>Lars Engebretsen</u>, <u>Martin Lind</u>, <u>Moises Cohen</u>, <u>Rodrigo</u> <u>Maestu</u>, <u>Alan Getgood</u>, <u>Gonzalo Ferrer</u>, <u>Silvio Villascusa</u>, <u>Soshi Uchida</u>, <u>Bruce A. Levy</u>, <u>Richard Von</u> <u>Bormann</u>, <u>Charles Brown</u>, <u>Jacques Menetrey</u>, <u>Michael Hantes</u>, <u>Timothy Lording</u>, <u>Kristian Samuelsson</u>, <u>Karl Heinz Frosch</u>, <u>Juan Carlos Monllau</u>, <u>David Parker</u>, <u>Robert F. LaPrade</u> & <u>Pablo E. Gelber</u>

- A future classification system should indicate the structures injured, the type of injury (avulsion versus intrasubstance) and chronicity (100%)
- A future classification system should guide treatment and reflect prognosis (100%)
- Acute posterolateral corner injuries should be surgically addressed within 2–3 weeks following injury (83%)
- Common peroneal nerve neurolysis should be performed systematically when performing a PLC reconstruction (57%)
- Hybrid procedures—reconstruction of primary structures (FCL, popliteus and popliteofibular ligament) and repair of secondary restraints (biceps avulsions, lateral capsule, iliotibial band avulsions) can yield satisfactory outcomes (100%)
- Repair of primary PLC structures (FCL/popliteus tendon) is a valid treatment option in bone avulsions Rehabilitation (87%)
- An early mobilization protocol (starting with range of motion on day 1) should be implemented to avoid arthrofibrosis (85%)

Clinical Case 1

• 31 yo cyclist crashed with laceration to anterior knee

Clinical Case 2

STaR (Surgical Timing and Rehab) Trial

- Aim 1: Acute vs delayed surgery
 6 weeks vs 12 weeks
- Aim 2: Early vs delayed rehabilitation
 Start with weight bearing vs delay it

POSSIBLE GROUPS:

AIM 1:

- Early Surgery and Early Rehabilitation
- Early Surgery and Delayed Rehabilitation
- Delayed Surgery and Early Rehabilitation
- Delayed Surgery and Delayed Rehabilitation AIM 2:
- Early Rehabilitation
- Delayed Rehabilitation

Inclusion Criteria

- Age 16 55 years
- Grade III injury of 2 or more ligaments
- Aim 1: must be able to have surgery within 6 weeks

Exclusion Criteria

- Ex fix use 10 or more days
- Vascular injury precluding early rehab
- Polytrauma precluding inability to participate in post-op care
 - Skin/soft tissue injury
 - Surgical procedure (patellar tendon repair, vascular repair)
 - Any condition precluding inability to participate (head injury, developmental delay)

Early vs. Delayed Surgery for MLKI

Early Surgery

• Definitive surgery performed within 6 weeks of injury

Delayed Surgery

• Definitive surgery between 12 and 16 weeks after injury

Aim 2

Aim 1

Surgery should be performed when clinically indicated

Surgical Principles for MLKI in the STaR Trial STaR TRIAL

- Surgery may include primary repair, augmentation, and/or reconstruction
- Should be performed anatomically and allow for early motion and weight bearing
- Graft choice for reconstruction is not standardized
- Address cartilage & meniscus lesions as necessary

Early vs. Delayed Surgery for MLKI

At the conclusion of surgery:

- Hinged, long-leg brace will be placed on the patient's knee joint
 - Locked in extension (anatomic 0°)
- Record the following (decision at discretion of surgeon)
 - Medication for pain control
 - Anti-coagulation/deep vein thrombosis prophylaxis
 - Antibiotics
 - Discharge decision home vs. admit to the hospital for monitoring

Early vs. Delayed Rehabilitation for MLKI

Early Rehabilitation

- After the first post-op visit:
 - Weight bearing as tolerated
 - Unrestricted motion in ROM brace
- NOT an "accelerated" protocol
 - No overpressure
 - No end-range stretching/mobilization
 - No painful weight bearing

Delayed Rehabilitation

- First four weeks after surgery:
 - Brace locked in extension
 - No joint motion
 - Non-weight bearing gait

- Do NOT exclude
 - Nerve injury
 - Avulsion/rupture of biceps or popliteus

? Eligibility Case 1

- 31 y/o M
- Injury to left knee 3 weeks ago
- 2B Lachman
- Grade 3 posterior drawer with sag
- Varus/valgus/dial neg

• Right distal radius fx

MRI confirms ACL/PCL

• Eligible?

If able to bear weight (platform walker)

? Eligibility Case 2

- 17 y/o M
- Football injury
- Dislocation during practice, reduced in ED

Case 2

- Placed in ex fix at outside hospital *
- ABI normal
- 2+ pulses
- Neuro exam intact
- MRI confirms ACL/PCL/MCL
- Eligible?
 Only if ex fix off before 10 days

Summary

- Multiligamentous injuries are a spectrum of injuries
- Timing of surgery for optimal results is inconclusive
- Increased arthrofibrosis for acute surgery
- Reconstruction of the posterolateral corner has lower failure rate than repair (unless bony avulsion)
- Rehab is anyone's call

Bibliogragraphy

- Levy BA, Dajani KA, Whelan DB, Stannard JP, Fanelli GC, Stuart MJ, Boyd JL, MacDonald PA, Marx RG (2009) Decision making in the multiligament-injured knee: an evidence-based systematic review. Arthroscopy 25:430–438
- Ibrahim SA (1999) Primary repair of the cruciate and collateral ligaments after traumatic dislocation of the knee. J Bone Joint Surg Br 81:987–990
- Fanelli GC, Edson CJ (2002) Arthroscopically assisted combined anterior and posterior cruciate ligament reconstruction in the multiple ligament injured knee: 2–10 year follow up. Arthroscopy 18:703–714
- Mills WJ, Barei DP, McNair P (2004) The value of the ankle- brachial index for diagnosing arterial injury after knee disloca- tion: a prospective study. J Trauma 56:1261–1265
- Chhabra A, Cha PS, Rihn JA, Cole B, Bennett CH, Waltrip RL, Harner CD (2005) Surgical management of knee dislocations. J Bone Joint Surg Am 87(Suppl 1):1–21
- Walker D, Hardison R, Schenck R (1994) A baker's dozen of knee dislocations. Am J Knee Surg 7:117–124
- Stannard JP, Sheils TM, McGwin G, Volgas DA, Alonso JE (2003) Use of a hinged external knee fixator after surgery for knee dislocation. Arthroscopy 19:626–631
- Richter M, Bosch U, Wippermann B, Hofmann A, Krettek C. Comparison of surgical repair or reconstruction of the cruciate ligaments versus nonsurgical treatment in patients with trau- matic knee dislocations. *Am J Sports Med* 2002;30:718-727.
- Shelbourne KD, Haro MS, Gray T. Knee dislocation with lateral side injury: Results of an en masse surgical repair technique of the lateral side. *Am J Sports Med* 2007;35:1105-1116.
- Karataglis D, Bisbinas I, Green MA, Learmonth DJ. Func- tional outcome following reconstruction in chronic multiple ligament deficient knees. *Knee Surg Sports Traumatol Arthrosc* 2006;14:843-847.
- Chahla, J., Murray, I.R., Robinson, J. *et al.* Posterolateral corner of the knee: an expert consensus statement on diagnosis, classification, treatment, and rehabilitation. *Knee Surg* Sports Traumatol Arthrosc 27, 2520–2529 (2019). https://doi-org.liboff.ohsu.edu/10.1007/s00167-018-5260-4
- Chahla, J., Murray, I.R., Robinson, J. *et al.* Posterolateral corner of the knee: an expert consensus statement on diagnosis, classification, treatment, and rehabilitation. *Knee Surg* Sports Traumatol Arthrosc 27, 2520–2529 (2019). https://doi-org.liboff.ohsu.edu/10.1007/s00167-018-5260-4
- Morris BL, Poppe T, Kim K, Barnds B, Schroeppel P, Mullen S, Tarakemeh A, Bechtold M, Vopat BG. Weightbearing Protocols After Posterolateral Corner Reconstruction: A Systematic Review. Orthop J Sports Med. 2021 Mar 17;9(3):2325967120988274. doi: 10.1177/2325967120988274. PMID: 33796586; PMCID: PMC7975581.

Thank you

What we know

- PCL injuries

 Injury in isolation is rare
 - Acute PCL
 reconstruction = risk
 for stiffness
 - Beware radiology read of "Grade 3"

PCL: posterior sag

PCL quad active test (contract quad)

What we know

OREGON HEALTH & SCIENCE UNIVERSITY

Fibular Attachments

Dial Test

Stress Views can be Helpful

Don't forget popliteus myotendinous junction

What we know

- MCL injuries
 - If simple and femoralsided, might heal well enough to ignore
 - Not always the case with multiligament knee injuries
 - Less predictable for intrasubstance/tibial side
 - Look for valgus
 opening in FULL
 EXTENSION
 - Posterior oblique

Posterior Oblique Ligament

• Valgus opening in extension

What we know

 ACL injuries

 Higher rate of failure if
 ipsilateral other
 ligament injury
 ignored

When in
 isolation, failure
 rates go up with

Bony edema and mechanism

Beware the tibial rim fracture

Subtle tibial rim fracture

Not just a "tibial plateau"

Not just a "tibial plateau"

Not just a "tibial plateau"

Meniscus Pathology Can Drive Deformity

Medial Meniscus Tear

Ex Fix Removed, and...

Pattern of Deformity

Medial Meniscus Bucket Handle Tear

Pattern of Deformity

The Unknowns

- Who should get what and when
 - Acute
 - Delayed
 - (Staged)
 - Graft choice
 - Surgical Technique
 - Tibial tunnel for posterolateral corner?
 - Single or double bundle PCL?
 - Autograft vs allograft?
- How aggressively to rehabilitate them after surgery

- Balance of forces or interest
 Becorch: non inforiority/
- Research: non-inferiority

